- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources5
- Resource Type
-
0002000003000000
- More
- Availability
-
41
- Author / Contributor
- Filter by Author / Creator
-
-
Saha, Debajit (4)
-
Joshi, Shruti (2)
-
McLane-Svoboda, Autumn (2)
-
McLane-Svoboda, Autumn K (2)
-
Parnas, Michael (2)
-
Sanchez, Simon W (2)
-
Apu, Ehsanul Hoque (1)
-
Bazhenov, Maksim (1)
-
Bazhenov, Maxim (1)
-
Chestek, Cynthia A. (1)
-
Chiel, Hillel J. (1)
-
Contag, Christopher H (1)
-
Cox, Elyssa (1)
-
Farnum, Alexander (1)
-
Ghaffari, Dorsa Haji (1)
-
Huan, Yu (1)
-
Kubo, Yoshimasa (1)
-
Lefevre, Noël (1)
-
Letner, Joseph G. (1)
-
McLane-Svoboda, Summer B (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available June 20, 2026
-
McLane-Svoboda, Autumn K; Sanchez, Simon W; Parnas, Michael; Apu, Ehsanul Hoque; Saha, Debajit (, TrAC Trends in Analytical Chemistry)
-
Joshi, Shruti; Navas-Zuloaga, Maria Gabriela; McLane-Svoboda, Autumn; Sanchez, Simon; Saha, Debajit; Bazhenov, Maxim (, https://2024.ccneuro.org/)Understanding olfactory processing in insects requires characterizing the complex dynamics and connectivity of the first olfactory relay - antennal lobe (AL). We leverage in vivo electrophysiology to train recurrent neural network (RNN) model of the locust AL, inferring the underlying connectivity and temporal dynamics. The RNN comprises 830 projection neurons (PNs) and 300 local neurons (LNs), replicating the locust AL anatomy. The trained network reveals sparse connectivity, with different connection densities between LNs and PNs and no PN-PN connections, consistent with in vivo data. The learned time constants predict slower LN dynamics and diverse PN response patterns, with low and high time constants correlating with early and late odor-evoked activity, as reported in vivo. Our approach demonstrates the utility of biologically-constrained RNNs in inferring circuit properties from empirical data, providing insights into mechanisms of odor coding in the AL.more » « less
-
Parnas, Michael; McLane-Svoboda, Autumn K; Cox, Elyssa; McLane-Svoboda, Summer B; Sanchez, Simon W; Farnum, Alexander; Tundo, Anthony; Lefevre, Noël; Miller, Sydney; Neeb, Emily; et al (, Biosensors and Bioelectronics)
-
Richie, Julianna; Letner, Joseph G.; Mclane-Svoboda, Autumn; Huan, Yu; Ghaffari, Dorsa Haji; Valle, Elena Della; Patel, Paras R.; Chiel, Hillel J.; Pelled, Galit; Weiland, James D.; et al (, IEEE Transactions on Neural Systems and Rehabilitation Engineering)
An official website of the United States government

Full Text Available